STANDARD 4: GEOMETRY

Students use geometric methods, properties and relationships as a means to recognize, draw, describe, connect, and analyze shapes and representations in the physical world.

READINESS (Kindergarten)

Students know and are able to do the following:

- 4M-R1. Identify, compare, classify, draw and make models of shapes
- 4M-R2. Recognize geometry in their surroundings

FOUNDATIONS (Grades 1-3)

Students know and are able to do all of the above and the following:

- 4M-F1. Relate geometric concepts to number and measurement ideas (e.g., dividing a rectangle into parts to represent multiplication)
 - Note: two-dimensional shapes: square, rectangle, triangle, circle
 - three-dimensional figures: sphere, cube, rectangular prism (box), cone, pyramid
 - attributes: size; shape; the number of sides, corners and faces
 - PO 1. Identify two-dimensional shapes by name and attribute
 - PO 2. Draw two-dimensional shapes
 - PO 3. Identify three-dimensional figures by name and/or attribute
 - PO 4. Compare attributes of two-dimensional shapes
 - PO 5. Compare attributes of three-dimensional figures
 - PO 6. Use a rectangular array to represent a multiplication fact (e.g., put 12 tiles in a rectangular array; make a 3 x 4, 6 x 2, and 12 x 1 array)
- 4M-F2. Predict how shapes can be changed by combining or dividing them
 - PO 1. Build geometric shapes with other common shapes (e.g., tangrams, pattern blocks, geoboards)

ESSENTIALS (Grades 4-8)

Students know and are able to do all of the above and the following:

• 4M-E1. Visualize and draw two- and three-dimensional geometric figures with special attention to analyzing and reasoning informally about their properties (e.g., parallelism, perpendicularity and congruence)

(*Grades 4-5*)

- PO 1. Classify two-dimensional shapes and three-dimensional figures by their properties A. by sight
- PO 2. Identify the properties of geometric figures using appropriate terminology and vocabulary (e.g., parallelism, perpendicularity and congruency)

 A. two-dimensional shapes (three- and four-sided polygons)
- PO 3. Draw or build two-dimensional shapes by applying significant properties of each (e.g., draw a rectangle with two sets of parallel sides and four right angles)

(*Grades* 6-8)

- PO 1. Classify two-dimensional shapes and three-dimensional figures by their properties B. by properties
- PO 2. Identify the properties of geometric figures using appropriate terminology and vocabulary (e.g., parallelism, perpendicularity and congruency)

 B. three-dimensional figures (prisms)
- PO 3. Draw or build three-dimensional figures by applying significant properties of each (e.g., draw a rectangle with two sets of parallel sides and four right angles)

• 4M-E2. Apply geometric properties and relationships such as congruence, similarity, angle measure, parallelism and perpendicularity to real-world situations

(*Grades 4-5*)

- PO 1. Design or draw a model (e.g., designing a playhouse, garden) that demonstrates basic geometric relationships, such as
 - A. parallelism, perpendicularity, similarity
- PO 2. Classify triangles by their angles and sides (e.g., equilateral, acute, isosceles . . .)
- PO 5. Identify lines that are parallel and perpendicular
- PO 6. Distinguish shapes that are congruent

(*Grades 6-8*)

- PO 1. Design or draw a model (e.g., designing a playhouse, garden) that demonstrates basic geometric relationships, such as
 - B. all of the above and proportionality and congruency
- PO 3. Label corresponding, supplementary and complementary angles
- PO 4. Measure and label specified angles (e.g., alternate interior, obtuse, acute, right, corresponding . . .)

• 4M-E3. Perform elementary transformations (e.g., tessellations, flips, slides, rotations)

(*Grades 4-5*)

- PO 1. Demonstrate slide, flip or turn using concrete geometric figures
- PO 2. Illustrate, using concrete or pictorial models
 - A. slide, flip or turn (e.g., quilts)
- PO 3. Draw or build a shape that
 - A. has symmetry

(*Grades 6-8*)

- PO 2. Illustrate, using concrete or pictorial models
 - B. reflections, rotations and translations (e.g., tessellations)
- PO 3. Draw or build a shape that
 - B. has two or more lines of symmetry

• 4M-E4. Represent and solve problems relating to size, shape, area and volume using geometric models

(*Grades 4-5*)

- PO 1. Solve problems using **given** formulas for
 - A. simple area and perimeter
- PO 2. Identify a variety of shapes having the same perimeter and area

(*Grades 6-8*)

- PO 1. Solve problems using **given** formulas for
 - B. area, perimeter/circumference of various circles/polygons
 - C. volume of prisms
- PO 3. Draw or build a variety of shapes having the same perimeter and area

PROFICIENCY (Grades 9-12)

Students know and are able to do all of the above and the following:

• 4M-P1. Interpret and draw three-dimensional objects

Core – will be tested on AIMS

- PO 1. Sketch prisms, pyramids, cones, cylinders and spheres
- PO 2. Classify prisms, pyramids, cones, cylinders and spheres by base shape and lateral surface shape
- PO 3. Recognize the three-dimensional figure represented by a two-dimensional drawing (e.g., "What figures are represented by given nets, sketches, photographs?")

• 4M-P2. Represent problem situations with geometric models and apply properties of figures

Core – will be tested on AIMS

- PO 1. Calculate surface areas and volumes of three-dimensional geometric figures, given the required formulas
- PO 2. Solve applied problems using angle and side length relationships
- PO 3. Solve applied problems using the Pythagorean theorem (e.g., determine whether a wall is square)
- PO 4. Solve applied problems using congruence and similarity relationships of triangles (e.g., estimate the height of a building, using shadows)

- PO 6. Determine the distance and midpoint between points within a coordinate system representative of a practical application
- PO 7. Find the area of a geometric figure composed of a combination of two or more geometric figures, given an appropriate real-world situation and the formulas
- PO 8. Solve problems involving complementary, supplementary and congruent angles

Core – to be taught in grades 9-10, but will not be tested on AIMS

- PO 5. Make a model of a three-dimensional figure from a two-dimensional drawing and make a two-dimensional representation of a three-dimensional object (models and representations include scale drawings, perspective drawings, blueprints or computer simulations)
- 4M-P3. Deduce properties of figures using transformations in coordinate systems, identifying congruency and similarity

Core – will be tested on AIMS

- PO 1. Determine whether a planar figure is symmetric with respect to a line
- PO 3. Determine the effects of a transformation on linear and area measurements of the original planar figure
- PO 4. Sketch the planar figure that is the result of a given transformation

Core – to be taught in grades 9-10, but will not be tested on AIMS

PO 2. Give the new coordinates of a transformed geometric planar figure

• 4M-P4. Deduce properties of, and relationships between, figures from given assumptions

Core – will be tested on AIMS

- PO 1. Find similarities and differences among geometric shapes and designs using a given attribute (e.g., height, area, perimeter, diagonals and angle measurements)
- PO 2. Identify arcs, chords, tangents and secants of a circle
- PO 3. State valid conclusions using given geometric definitions, postulates and theorems
- PO 4. Represent pi as the ratio of circumference to diameter (Moved from 1M-P2, PO5)
- 4M-P5. Translate between synthetic and coordinate representations (e.g., a straight line is represented by the algebraic equation Ax + By = C)

Core – will be tested on AIMS

PO 1. Determine the relative placement of two lines on a coordinate plane by examining the algebraic equations representing them

Core – to be taught in grades 9-10, but will not be tested on AIMS

PO 2. Verify characteristics of a given geometric figure using coordinate formulas such as distance, mid-point, and slope to confirm parallelism, perpendicularity and congruency

• 4M-P6. Recognize and analyze Euclidean transformations (e.g., reflections, rotations, dilations and translations)

Core – will be tested on AIMS

- PO 1. Classify transformations based on whether they produce congruent or similar noncongruent figures
- PO 2. Determine whether a given pair of figures on a coordinate plane represents a translation, reflection, rotation and/or dilation

Core - to be taught in grades 9-10, but will not be tested on AIMS

PO 3. Apply transformational principles to practical situations (e.g., enlarge a photograph)

DISTINCTION (Honors)

Students know and are able to do all of the above and the following:

- 4M-D1. Deduce properties of figures using vectors
- 4M-D2. Apply transformations, coordinates and vectors in problem solving